Three Adventures: Symbolically Discovered Identities for Zeta(4n+3) and like Matters

نویسنده

  • Jonathan Borwein
چکیده

I will describe three sets of results in which computer search and computer algebra played a large role in the discovery/and or proof of results each ultimately relating to hypergeometric functions. 1. Ap ery: A generating function for (4n+3). 2. Ramanujan: Integrals, means and transformations of the hypergeometric function 2F1(1=3;2=3;1; 1 x): 3. Euler: Multivalued {function values and a product of hypergeometric 2F1's. y In each case, my emphasis is on the role of disciplined experimentation and computation. 2

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An exotic shuffle relation for multiple zeta values

In this short note we will provide a new proof of the following exotic shuffle relation of multiple zeta values: ζ({2}x{3, 1}) = ( 2n+m m ) π (2n+ 1) · (4n+ 2m+ 1)! . This was proved by Zagier when n = 0, by Broadhurst when m = 0, and by Borwein, Bradley, and Broadhurst when m = 1. In general this was proved by Bowman and Bradley. Our new idea is to use the method of Borwein et al. to reduce th...

متن کامل

New Identities Involving Sums of the Tails Related to Real Quadratic Fields

In previous work, the authors discovered new examples of q-hypergeometric series related to the arithmetic of Q( √ 2) and Q( √ 3). Building on this work, we construct in this paper sum of the tails identities for which some which some of these functions occur as error terms. As an application, we obtain formulas for the generating function of a certain zeta functions for real quadratic fields a...

متن کامل

Empirically Determined Apéry-Like Formulae for ζ(4n+3)

Research supported by NSERC, the Natural Sciences and Engineering Research Council of Canada. Some rapidly convergent formulae for special values of the Riemann zeta function are given. We obtain a generating function formula for (4n+3) that generalizes Apéry’s series for (3), and appears to give the best possible series relations of this type, at least for n< 12. The formula reduces to a finit...

متن کامل

On Plouffe’s Ramanujan Identities

Recently, Simon Plouffe has discovered a number of identities for the Riemann zeta function at odd integer values. These identities are obtained numerically and are inspired by a prototypical series for Apéry’s constant given by Ramanujan: ζ (3) = 7π3 180 −2 ∞ ∑ n=1 1 n3 (e2πn−1) Such sums follow from a general relation given by Ramanujan, which is rediscovered and proved here using complex ana...

متن کامل

Experimental Determination of Apéry-like Identities for ς(2n + 2)

We document the discovery of two generating functions for ζ(2n + 2), analogous to earlier work for ζ(2n + 1) and ζ(4n + 3), initiated by Koecher and pursued further by Borwein, Bradley and others.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997